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I. Interchange Theorems and the Variation Principle

Interchange theorems have been proven and used in Rayleigh
1

Schroedinger perturbation theory and in perturbation theory within
. .2 . .

the Hartree-Fock approximation. In this note we wish to exhibit

the common origin of these theorems and also to indicate that such
. . : 3 .

theorems can be expected to hold in other situations™, by showing
how interchange theorems arise out of the variational principle.

We will confine our attention to first order properties.

We consider a Hamiltonian

H = H + NV +).z.w
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Let *J be an optimal trial function which we have derived from

the variational principle:
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where, for simplicity of notation, we assume everything to be real.

We will suppose that, in quite a general way,

T = ) @
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where HD stands for some functions (possibly they are simply

constants) which have been determined variationally by free variation
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of their functional form. We will further assume that \tO
~

and \\/ can be expanded in a double power series in >\ and )/v :
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Inserting these expansions and the corresponding ones for 6\}’ into

(1) and (2) and equating the coefficients of each order to zero we

find5 in particular
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Now we have assumed that "f is freely variable, hence consider
. N -~
the variation O N4 (“D‘:— QPC\O) with no other part of &
changing. From (4) and (5) this then yields
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whence from (7) we find
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Similarly 6\?’(:0\3: %‘ W@\)  ,nd all other variatioms zero,
yields
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Finally we note that from (6)
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since N W (&)Q") is in the form of 6\\‘@) with ~
5P = ?‘“’.

Combining (8) and (11) it then follows from (9) and (10) that

we have the interchange theorem
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II. PV in a Different Notation

In this note we wish to derive one of the essential results in
. . . 3 .
the interesting paper of Silverman and van Leuven , using a
. notation which is perhaps more familiar (certainly it is to us).
Namely we wish to derive the result which is summarized in the
discussion following their equation (24).
We consider now a single perturbation, however we will continue
-~

to allow the \e to denote a set of functions, not necessarily

constants as in reference 3. Then we have instead of ( 4) and (5)
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while from (1) we derive the sequence of equations
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etc.

%
Equation (14) then determines ?W) , equation (15)
)]

determlnes \e , etc. We now remark that in the n'th order
N

. m
equation, \\, , and hence (\\P'L ) , occurs explicitly in only two

terms
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Now consider any variation which is such that =p . Then we

note the following:
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(i) Clearly (18) does not contribute since SY*' =0,
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(ii) The only part of o which involves P will be
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/e
3’,}'&;’): é\"}—[m') , and hence, from (14) will make no contribution
to (17).
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Thus we see that variations with S‘e =p lead only to

conditions on the lower orderfunctions, conditions which, since these
functions have already been determined, must therefore be satisfied
automatically in any consistent variational calculation (one can

of course also check this explicitly but, as we have said, it must
be true if everything is to be consistent). Hence we conclude, in

o)
agreement with the result given in reference 3, that only {p
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need be varied in order to determine the P
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